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Abstract—The dynamic behaviour of viscoelastic plates of arbitrary shape subjected to elevated tem-
peratures is examined. Using a method based upon the concept of isoamplitude contour lines in conjunction
with isothermal contour lines on the surface of the plate, a simple general approach for the study of
thermally induced vibrations of a viscoelastic plate is presented here. The resulting method of solution is
applied to study the response of a viscoelastic plate in the form of a hollow eliliptical annulus and a
viscoelastic rectangular plate under a thermal shock at the centre. For rapidly applied heat inputs, an
approximate analysis for its rapid estimation is also presented. Numerical calculations are carried out for
various values of geometrical and mechanical parameters and the results are illustrated by graphs.

L.LINTRODUCTION

Thermally induced vibrations of viscoelastic plates have been the subject of useful study in the
recent past because of their practical importance in modern nuclear technology. Under high
temperatures the material exhibits the phenomenon of creep and thus mechanical properties of
plates must be time dependent as well as temperature dependent. In an earlier paper{1], the
authors showed how a simplified approach can be made to study the dynamic response of
viscoelastic plates at elevated temperatures and as an illustration of the procedure, the vibration
of a viscoelastic circular plate under a thermal shock at the centre was discussed. In another
paper (2], an indication was given as to how the Berger technique can be used to study the
dynamic behaviour of certain viscoelastic plates. Some recent work done by Nagaya[3-5] on
vibration analysis of viscoelastic plates without taking thermal effects into consideration is also
worth mentioning.

In the present paper, the method in Ref. [1] is expanded to study the dynamic behaviour of a
hollow elliptical plate subjected to a suddenly applied heat input, and a rectangular plate under
a thermal shock at the centre. The theory developed here gives a closed-form solution for the
time-history response of viscoelastic plates. The resuits should be -useful to nuclear engineers,

2. BASICEQUATIONS
By using the procedure outlined in Ref. [1], the dynamical equation for thermally induced
vibrations of a viscoelastic plate at any time 7 can be expressed in the following integro-
differential equation form
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where p =(3/37), D(p) and u(p) are viscoelastic operators corresponding, respectively, to the
elastic constants D (flexural rigidity) and u (Poisson’s ratio) and ar is the coefficient of linear
thermal expansion of the material.

Here the deflection W is considered to be a suitable function of u and , where u(x, y) =
constant is the equation of isoamplitude contour lines. The expressions for R,, F, and G}
appearing in eqn (1) are listed in Ref. [6] and the expression for ¢ given by # = u?+ u 2.

The solution of the above equation can be found in the same way as for the free vibration
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problem as follows. Firstly, the eigenfunctions W, and the eigenfrequencies A; of the cor-
responding elastic problem under homogeneous boundary conditions are determined. It is
well-known that this eigenvalue problem is seif-adjoint and hence the associated eigenfunctions
form a complete set and are mutually orthogonal. The viscoelastic solution is then obtained by
assuming that the deflection w and the temperature T appearing in the above equation can be
expressed as a linear sum of the eigenfunctions W, in the form

w=§| () Wi(u), T=§jl T(r)Wiu). @

Since W, is a solution of the corresponding elastic equation then, by using the heat conduction
equation for a plate and the orthogonality condition of the eigenfuctions, one obtains from eqn
(1) an infinite number of linear differential equations for the g,(7) as

2
Alzguﬂgi(f).;.g-‘féﬂ:—gz%;ﬂzuw% §i=123,... €))

where o is the specific heat and & is the coefficient of thermal conductivity of the plate.

3. APPLICATIONS
In order to assess the accuracy of the method, the following cases will now be discussed.

Case 1

A bollow elliptical plate bounded externally and internally by confocal ellipses as shown in
Fig. 1.

Assume that the plate is initially at a uniform temperature T, throughout and the boundary
temperatures are suddenly changed to zero temperature. With the semi-major and semi-minor
axes of the elliptic boundaries of the plate being denoted by a4, b and a,, b,, respectively, the
two equations are

xZ 2
1—;,—%,=0 for the outer boundary I,
xl 2
1-a—,—;'—,=o for the inner boundary T}, )
t 1

with the similarity condition for the two ellipses
aJa=blb=8, 0<B<I, )

If attention is restricted to symmetric modes of vibration, then the eigenfunctions for the
corresponding elastic problem are given by (6]

W, = Aolkf) + A Yok + AsIkif) + AKok) ... ©)

ui(x,y)s constant

Fig. 1. Annular plate bounded by confocal ellipses.
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where A, A,, A, and A, are constants and f and k; are given by

. ¥ 8pha'b’A}
f=l-u u=1-5-05 k' =Gy gy

-1 )

If the inner and the outer boundary of the plate are assumed to be either clamped or simply
supported, then the required boundary conditions at the two edges are

w=0 M, = y, n ¥ for the outer boundary T,
and
w=0,M,= 'yg n ¥ for the inner boundary I, 8

where vy, and vy, are spring constants. If y; = y, =0, we obtain simply supported edges, and for
71 = 7, =, we have clamping at the edges. The expressions for bending moment M, and slope
(aw/an) as given in [7] are

3w W
M"_PW"'QE? (8]
oW _ /3%

w= Vi )

Using the same technique of satisfying the boundary conditions by taking the mean values of P,
Q and V't as explained in [7], the boundary conditions (8) can be expressed in the new cariable
f as

2
W= %7,5-4' ( +ay,)‘;—‘;=0 at the boundary T, for f=1
and
w= .a_ﬂ..; (lfi-;- ay, d 7 =0 at the inner boundary T for f = (10)
where
_ab(a+b)
= D+ 5y i

If use is made of the above four conditions expressed by eqn (10), the values of the constants
Aj,..., A, appearing in eqn (6) can be determined. The resultant form for W,'s thus becomes

Jolk;) Yo(k)) I(k)) Kolk))
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where the k;’s satisfy the characteristic determinant
Jo(k;) Yo(k;) Io(k;) Ko(k;)
Jo(Bk;) Yo(Bk;) 1Bk Ko(Bk))
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+ ¢2kiJ o(k;) + ok Y olk;) + dakdo(k;) + ¢k Ko(k;)
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and where we have denoted

ptay =4e, %+072=¢2- (14)

Here primes denote differentiation with respect to the argument. With the eigenfunctions and
ecigenvalues thus having been determined, the next task is to analyse the effects of temperature
in the region of the plate. The corresponding temperature distribution for this problem will be
(8]

= S ..—.—!9&%1— ~(cHal+oD)f2alb N,y
r Toﬁnzd fo(w.ﬁ)+fo(w..)v°(*’uf)e (eHa+b2)/2a2b7) )
where
UO(an) = Jo(w'lf) Yo(‘l)n) = Io((l),l) Yo(w"f) (16)

and w,’s are the roots of Uyw,B8):=0. Here ¢ is a material constant depending on the specific
heat and the thermal conductivity of the material.

Since the temperature field and the elastic eigenfunctions of the problem are now known,
eqn (3) can now be solved for the time functions g(r) for any particular viscoelastic material.
This will be explained further in the next section.

Case 2

A rectangular piate under a thermal shock at its centre.

Assume the plate is subjected to an instantaneous point heat source at the centre, and
beginning from an instant r =0 the edges are kept at zero temperature. The solution to this
thermal shock problem is pertinent to many practical situations in welding engineering as well
as modern nuclear technology.

For a rectangular plate with sides of length a and b (see Fig. 2) a good approximate equation
of isoamplitude contour lines under symmetric modes of vibration can reasonably be con-
sidered as{7]

2

wxn=(-)(1-8)

which in fact represents the equation of the boundary. The eigenfunctions W, in this case are
approximated as finite power series in f in the form

W,(f)=§cf,~f" (18)

where the coefficients C; are calculated by the usual method of collocation after satisfying the
required boundary conditions. In this study, seven terms of the power series solutions have
been used. Calculations of more coefficients showed that the effects of their inclusion in the

series is negligible.

b/,
s
Far N Y X
1 ¥
S N SNBSS
ha Y e o 2g
u*’ -bj2 M u(x.y)=constant

Fig. 2. Rectangular plate.
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In order to discuss the effects of temperature under a thermal shock at the centre of the
plate, one is required to solve the corresponding heat conduction equation[8] as given by

”§ Vids+sf LdeQ —‘I fr.,dn (19)

where the Laplace transform of T(u, 7) is denoted by T(u, s) and To(u) is the initial temperature
which obviously is zero in the present problem.

Differentiating the above equation with respect to u making use of the mean value theorem
for evaluating the resulting contour integrals, one finally arrives at the following second order
differential equation in the variable f

dT 1dT &
T 0, T=0 (20)

where o” = abs/4c®. The above equation is recognised as a form of the modified Bessel's
equation of order zero which has it complete solution as

T(f, 5) = A(s)Iy(wf) + B(s)Ko(wf) Q1)

where I, and K, are modified Bessel functions. The unknown coefficients A and B are to be
obtained from initial and boundary conditions of the problem, which are as follows:

@) T =0 for 7 =0, everywhere in the region of the plate except at the centre ¥ =1,

(@) im¢ 2L ds =-45(),
u=— C
(iii) T =0 on the boundary u =0, r=0, 22)

where 5(r) is the Dirac delta function and g is the strength of a point heat source. Taking the
Laplace transforms of boundary conditions (ii) and (iii) above, one finally obtains, in term of the
variable f,

lim 81 = — glemc?, T(f)=0for f=1 @)
o df

where
e=(a+b)2ab,

on using these conditions in eqn (21), the constants A and B are obtained as

Ko(w)
o Tw) B e 2
Hence the solution T(f, s) can be written as
= _ _q [Iw)Ko(wf)—~ Kow)l(wf)
T=tre [JL Iw) ] 25)

Using the inversion theorem [9), the solution T(f, 7) is found to be

= 16 e Jo(w ~(4c?ablm T
TG =y 2, Tl e, 26)

where w,’s are the roots of Jy(w,) =0, and J, and J, are Bessel functions of the first kind.
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Thus the temperature distribution at a generic point (x, y) of the plate ca1 be obtained using the
above formula.

A similar approach for the case of perfectly general plates of visco-elastic materials can be
used once the contour equations for such plates are known. Many such contour equations have
previously been discussed in the literature, for example Equilateral Triangle[8], Parabola[7],
Semicircle[12] and for general shaped plates[13].

4, VISCOELASTIC MODEL
The viscoelastic model adopted in this study is one which behaves elastically in dilatation
and has the viscoelastic behaviour of the Kelvin model in shear. This particular model is chosen
primarily for the sake of illustration and is considered to be a good representation of
viscoelastic behaviour of commonly used materials in nuclear technology. In this model, the
operator D{p) takes the following form

p 12GK + 2E, + 2np)

27
where 7, K and E, are material constants which can be expressed in terms of Young’s modulus

and Poisson’s ratio in the form

__E
-2y

__E
T+p

K E,

St{bsﬁmﬁng the above form for D(p) in eqn (3) one obtains a third ordinary differential
equation,
{A’D\(p)+ Dp*Dx(p)}g|(r) = ~ ApD\(p)Ti(r) (28)
where A = ayo(1 + u)Dikh; u is considered constant
D\(p) = h*(E, + np}6K + E; + np)/12,
Dy(p)=(3K +2E; +2np). 29)

In order to solve eqn (28) by the Laplace transform method, one needs to know the
corresponding initial conditions. By using the method developed by Deleeuw[10] for determin-
ing initial conditions for the time equation of a viscoelastic plate, one obtains the required initial
conditions for the case where the plate is constrained in its deformed position for a long time prior
to its release and consequently all viscous effects have decayed to zero by the time of release, That
is, the internal forces within the plate are initially elastic (5 = 0). Hence the initial conditions for the
time equation are

£(0) =0, g{0)=~ AT/(0), and g}(0) = — AT{0), €]

where the prime denotes differentiation with respect to =. Equation (28) can be written in the
polynomial form as

{ 2:) a.p“}s;(f) = -A{?‘; bnp"}T;(r), 31)

where the coefficients a, and b, contain only material constants. The above equation can now
be solved with the aid of the Laplace transform method with initial conditions (30). This yields

P(8)g(5) = — Al{bs + bys® + bys*} Ti(s)
—{(by - @)+ (by - ay)s + bss} T(0)
—{(by— a3) + bys} T(0) - b; T'(0)], (32)
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where
3
P(s)=3 a.s", (33)
n=0

and the bars denote Laplace transforms, s being the Laplace transform parameter.

The solution to eqn (32) can be obtained by inverse Laplace transformation when the
functions Tj(7) are known. The functions Tj(r) can however be obtained from eqn (2) by
making use of the orthogonality conditions of the eigenfunctions w;(r) given by

1
J; . fwiw; df = 8;B;, (34)

where §; is the Kronecker delta and f* is the value of f corresponding t0 up,,. Thus, for the
Case 1 of hollow elliptical plate one obtains from eqn (15)

_TJl < Jo(w,B) ! ~(cHa2+ b 2022 20
T}(T)—T?F.mJo(wnﬂ)+fo(w,,){L fijmUo(w,.f)df}xe ( bh2ab D0t 39)

while for the Case 2 of rectangular plate one obtains from eqn (26)

oo I
T = gkgr 2 [, Mo af| et [ 5, )

where B and B denote respectively the corresponding value obtained from eqn (34) for the
elliptical and rectangular plates and wf(f) and w/*(f) are the corresponding eigenfunctions.

5. NUMERICAL RESULTS
Numerical analysis is carried out with a view to looking at the various effects of geometrical
and mechanical parameters on the vibrational behaviour of plates. Figure 3 shows the effect of

Fig. 4. Plot of non-dimensional maximum deflection vs non-dimensional time for the rectangular plate.
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Table 1. Values of w for various values of f(= V(1 - «)) and B( = ga-' = %‘)
L
B 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
03 0000 -00001 -0000f -0.0002 -0.0002 -00001 -0.0000 0.0000
0.5 —_ - 0.0000 —0.0007 -0.0016 -0.0015 -0.0006 0.0000
0.7 - - -_ - 0.0000 -0.0224 -0.0212 0.0000
W!! 4 |
Wotmas

2

1P
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110 112 114 116 X

g* 1 118

Fig. 5. Plot of W,/ Womx Vs B* for the elliptical plate.

2 InE « 6.0

/5.. ol
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-2F

Fig. 6. Plot of ln{-%,v-"-
stmax

} vs In{n} for the elliptical plate.

aitering the values of the aspect ratio a/b and the thickness h, respectively, in the case of the
elliptical plate. Figure 4 shows the effects of altering these same parameters for the rectangular
plate. With the annular elliptic plate the effect of altering the size of the annular hole can also
be studied (see Table 1). It can be seen that as the value of the ratio parameter 8 increases, the
amplitude of the vibration increases markedly.

In Fig. 5 a plot of the ratio of maximum total to maximum static deflection vs a
non-dimensional time parameter is given for the elliptical plate. The static deflection W, is
obtained by solving eqn (1) while disregarding inertia and damping. The non-dimensional time
parameter B* is a ratio of characteristic thermal time to characteristic mechamcal time
(following the line of Jadeja and Loo[11]) as is given by

h D 14
L L
B ac{ph} ’

Variation in B* can hence be obtained by altering h, 4, ¢, p, E or u. For Fig. 5 different values
of B* were obtained by altering u, and the plate was taken to be almost elastic, i.e. a very small
value of 7 was chosen. As 7 is allowed to increase, the ratio wy,./ W, m. increases quickly (Fig.
6). Thus for plates that are almost elastic (small n) the inertia and damping terms cannot be
ignored but as the plate becomes successively more “‘viscous” the inertia and damping terms
have successively less influence on the total deflection. The geometry of a plate and the type of
heating also effect its mode of vibration as evidenced by comparing Figs. 3 and 4. All numerical
results were calculated while taking both plates to be clamped on all of their boundaries.

In essence, the particular model that one chooses for a study of visco-elastic material
behavior greatly affects the resultant vibrations and this will be studied in greater detail in a
subsequent paper.
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